

Image Courtesy of Cannon Design

Macenzie Ceglar | Structural Option Advisor : Heather Sustersic April 14, 2014

The New Library at the University of Virginia's College at Wise

Image Courtesy of Cannon Design

Building Introduction

- Statistics
- Gravity System
- Lateral System
- Problem Statement & Solution
- Two-way System
- PT System
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

Owner: University of Virginia Architecture & Engineering: Cannon Design

Building Introduction

- Size: 68,000 GSF
- Stories Above Grade: 6
- Height: 102 FT
- Cost: \$43 Million
- August 2012 August 2015

Image Courtesy of Cannon Design

- Building Introduction
 - Statistics
 - Gravity System
 - Lateral System
- Problem Statement & Solution
- Two-way System
- PT System
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

Unique Feature: Integration into 60 Hill Side

Building Introduction

Image from Construction Documents

Image Courtesy of Cannon Design

- Building Introduction
 - Statistics
 - Gravity System
 - Lateral System
- Problem Statement & Solution
- Two-way System
- PT System
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

Existing Gravity System

• Spread/Strip Footings • Temporary-Leave-In-Place Retaining Wall System

 Composite Steel Floor Framing • 2" 18 ga. Metal Decking • 4 ¹/₂" NWC Topping • 3 ¹/₂" x ³/₄" Studs

• Wide Flange Members

• Typical Bay Size: 25'-4" x 25'-4"

Images from Construction Documents

Building Introduction

- Statistics
- Gravity System
- Lateral System
- Problem Statement & Solution
- Two-way System
- PT System
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

- Ordinary reinforced concrete shear walls • 12" thick
- Located near stairs and elevator shafts

Existing Lateral System

• #5 rebar @ 18" EW EF

Image from Construction Documents

- Building Introduction
- Problem Statement & Solution
- Two-way System
- PT System
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

Problem Statement

- Exiting structure well designed
- Problem Scenario
 - Redesign the structure in <u>concrete</u>

- Redesign structural systems as a two-way concrete slab system
- Address deflections in longer span bays
- Investigate the possibility of a post-tensioned system
- Determine feasibility of a concrete system Consider cost and schedule impact

- Building Introduction
- Problem Statement & Solution
- Two-way System
- PT System
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

Two-Way Concrete System

- Building Introduction
- Problem Statement & Solution
- Two-way System
 - Floor Slab Design
 - Deflection Checks
 - Final Slab Design
 - Column Design
- PT System
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

Floor Slab Design

- Trial slab thickness: 10"
- Drop Panel Sizes:
 - L/6 in each direction
 - Thickness: 1.25h =12.5"
- Punching shear controlled design

Column	-X (FT)	+X (FT)	-Y (FT)	+Y (FT)	Thickness (IN)	Required an Increase in Size
3E	1.33	8.44	8.44	1.33	6	Yes
3D	1.33	8.44	8.44	8.44	9	Yes
3C	1.33	8.44	1.33	8.44	9	Yes
6E	10.33	9.11	8.44	1.33	4	Yes
6D	5.17	4.56	4.22	4.22	6	No
6C	6.20	5.47	3.83	5.07	2.5	Yes
8B	13.67	1.33	1.33	12.67	13	Yes

- Building Introduction
- Problem Statement & Solution
- Two-way System
 - Floor Slab Design
 - Deflection Checks
 - Final Slab Design
 - Column Design
- PT System
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

Trial Floor Slab Designs

Drop Panels Only

Drop Panels & Edge Beams

Shear Studrails

Shear Studrails & Edge Beams

- Building Introduction
- Problem Statement & Solution
- Two-way System
 - Floor Slab Design
 - Deflection Checks
 - Final Slab Design
 - Column Design
- PT System
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

Span	Length (FT)	Deflection	L/480	Pass/Fail
5D - 6D	31	1.33	0.775	Fail
6D - 7D	27.33	1.02	0.683	Fail
5E - 6D	40	1.43	1.0	Fail
6E - 7D	37.33	1.24	0.933	Fail
5C- 6D	40	1.33	1.0	Fail

Deflections

• Maximum Allowable Deflection: L/480

• Initial Deflections:

- Building Introduction
- Problem Statement & Solution
- Two-way System
 - Floor Slab Design
 - Deflection Checks
 - Final Slab Design
 - Column Design
- PT System
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

- Trial Design Solutions:
 - Weighted Average
 - Compression Reinforcement
 - Drop Panels
 - Shallow Beams

Span	Length (FT)	Deflection	L/480	Pass/Fail
5D - 6D	31	0.709	0.775	Pass
6D - 7D	27.33	0.511	0.683	Pass
5E - 6D	40	0.875	1.0	Pass
6E - 7D	37.33	0.817	0.933	Pass
5C- 6D	40	0.827	1.0	Pass

Deflections

- Building Introduction
- Problem Statement & Solution
- Two-way System
 - Floor Slab Design
 - Deflection Checks
 - Final Slab Design
 - Column Design
- PT System
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

Final Floor Slab Design

- Slab thickness: 10"
- Drop Panel: 7' x 7' x 6"
- Shallow Beam: 7' x 14"
- Additional edge beams and interior beams
- •Program output verified by hand

- Building Introduction
- Problem Statement & Solution
- Two-way System
 - Floor Slab Design
 - Deflection Checks
 - Final Slab Design
 - Column Design
- PT System
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

0'-10"

Slab Reinforcement

Typical Slab Reinforcing Schedule

Top Mat		Bottor	m Mat	
	E-W	N-S	E-W	N-S
	#5 @ 16"	#5 @ 16"	#5 @ 16"	#5 @ 16"

- Building Introduction
- Problem Statement & Solution
- Two-way System
 - Floor Slab Design
 - Deflection Checks
 - Final Slab Design
 - Column Design
- PT System
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

• Typical:

Column Redesign

• Non-Typical Columns:

• 6D • 6C • 7C

Image from Construction Documents

- Building Introduction
- Problem Statement & Solution
- Two-way System
 - Floor Slab Design
 - Deflection Checks
 - Final Slab Design
 - Column Design
- PT System
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

Column Redesign

vel	P _u (k)	øPn/Pu	
6	185	6.5	
5	495	2.4	• 24" x 24"
4	803	1.5	• (8) #8 Bars
3	1112	1.08	
2	1420	1.24	• 28'' x 28''
1	1730	1.02	• (16) #8 Bars

Image from Construction Documents

- Building Introduction
- Problem Statement & Solution
- Two-way System
- PT System
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

Post-Tensioned Concrete System

- Building Introduction
- Problem Statement & Solution
- Two-way System
- PT System
 - •Tendon Layout
 - Number of Tendons
 - Deflections
 - Final Layout
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

Unfavorable Factors

• Unfavorable Arrangement of Shear Walls and Location of Foundation Walls

- Building Introduction
- Problem Statement & Solution
- Two-way System
- PT System
 - Tendon Layout
 - Number of Tendons
 - Deflections
 - Final Layout
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

Tendon Layout

- Building Introduction
- Problem Statement & Solution
- Two-way System
- PT System
 - •Tendon Layout
 - Number of Tendons
 - Deflections
 - Final Layout
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

Banded Direction:

Initial Number of Tendons

• Based on minimum precompression stress = 125 psi

• 27 kips/tendon after all stress losses

Distributed Direction:

 $(125psi)(12/1')(8'') = 12000 \ lb/ft$

$$x = \frac{5400 \, lbs}{12000 \, lb/ft} = 4.5 \, ft$$

ACI318-11 18.12.4 :

Maximum tendon spacing of: 5 feet Max. 8 x Slab Thickness

$$Tendons = \frac{304 \, kips}{27 \, kips/tendon} = 11 \, Tendons$$

 $A = (24.33')(12/1')(8'') = 2429 in^2$

 $P = (125psi)(2429in^2) = 304kips$

- Building Introduction
- Problem Statement & Solution
- Two-way System
- PT System
 - •Tendon Layout
 - Number of Tendons
 - Deflections
 - Final Layout
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

Adjusting Number of Tendons

FAIL

• Maximum tensile stress = $6\sqrt{f'c}$ = 424.3 psi

• Max precompression stress = 350 psi

• Span D5-D6 and D6-D7:

• Maximum number of tendons = 32

• Required number of tendons = 34

- Building Introduction
- Problem Statement & Solution
- Two-way System
- PT System
 - Tendon Layout
 - Number of Tendons
 - Deflections
 - Final Layout
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

Deflections

• Maximum Allowable Deflection: L/480

• Class U system \rightarrow Deflections calculated using uncracked section properties.

2(Self Dead)+2(Balance)+3(Other-Dead)+1.6(Live)

Span	Length (FT)	Deflection	L/480	Pass/Fail
5D - 6D	31	0.578	0.620	Pass

- Building Introduction
- Problem Statement & Solution
- Two-way System

• PT System

- •Tendon Layout
- Number of Tendons
- Deflections
- Final Design
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

Final Layout

- Building Introduction
- Problem Statement & Solution
- Two-way System
- PT System
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

Lateral System Analysis

- Building Introduction
- Problem Statement & Solution
- Two-way System
- PT System
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

Shear Force Comparison

Max Shear due to Soil Loads: 2294 K

Comparison of Shear Forces			
	Shear Capacity (k)	Force (k)	
Driginal Loads	4752	3071	
New Loads	4934	3908	
rcent Increase	3.8%	27.3%	

Drift Comparison

Max Allowable Building Deflection: 3.1"

Max Allowable Story Drift: 3.2"

Comparison of Maximum Drifts			
	Max Building Deflections (in) [Wind Case 4 +M Same Direction]	Max Story Drift [Y-Direction +M]	
Original Loads	2.16	2.81	
New Loads	2.72	3.18	
Percent Increase	25.9%	13.2%	

- Building Introduction
- Problem Statement & Solution
- Two-way System
- PT System
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

Cost and Schedule Analysis

- Building Introduction
- Problem Statement & Solution
- Two-way System
- PT System
- Lateral System
- Cost and Schedule Analysis
 - Cost Analysis
 - Schedule Analysis
- System Comparison
- Conclusion

Steel System Cost

ltem	Amount
er Reinforcement	28,317
mal Weight Fill	144125
sh Elevated Slab	67,830
e and Protect Slab	10,755
le Flange Steel Column	208,893
uctural Floor Framing	742,673
tal Floor Deck	178,797
ay Fire Proofing	102,629
Total Cost	\$ 1,484,019

• Structure ~ 3% of total project cost

Concrete System Cost

Item	
Formwork	
Structural Concrete	
Finishing	
Placement	
Reinforcement	
Total Cost	

- Reuse of formwork
- +\$8 for accelerated slab concrete mix

• +\$2/Month for rented column forms

Amount	
553622	
273961	
42863	
51167	
231115	
\$ 1,268,000	

- Building Introduction
- Problem Statement & Solution
- Two-way System
- PT System
- Lateral System
- Cost and Schedule Analysis
 - Cost Analysis
 - Schedule Analysis
- System Comparison
- Conclusion

Cost Comparison

15% Project Cost Savings

Total Sys	stem
Steel	
\$ 1,484,019	Q

Per Squar	e Fo
Steel	
\$ 24.50	

o Cost

Concrete

\$1,268,000

ot Cost

Concrete

\$ 21.00

- Building Introduction
- Problem Statement & Solution
- Two-way System
- PT System
- Lateral System
- Cost and Schedule Analysis
 - Cost Analysis
 - Schedule Analysis
- System Comparison
- Conclusion

STRUCTUR/	L STEEL	03-Mar-14 A	15-Aug-14		119		1	,			!		!	V 15	Aug-14, ST	RUCTURAI	STEEL
SS-05 12 15	Structural Steel Imbeds - Fab & Del	03-Mar-14	10-Mar-14	0%	5				Stru	tural Steel	Imbeds - F	ab & Del					1
SS-05 12 00	Structural Steel - Mobilize	02-Jun-14	03-Jun-14	0%	1							Structu	ral Steel - N	lobilize		;	1
SS-05 12 20	Steel Erection - Lvl 2	04-Jun-14	25-Jun-14	0%	15							—	Steel Erec	tion - Lvl 2		i İ	1 🔰
SS-05 12 02	Structural Steel - Fab & Del	11-Jun-14 A	04-Jun-14	2.08%	1					 	 .						1
SS-05 31 00	Decking - Lvl 2	20-Jun-14	25-Jun-14	0%	3								Decking - L	vl 2		!	
SS-05 12 30	Steel Erection - Lvl 3	25-Jun-14	02-Jul-14	0%	5			İ					Steel Er	ection - Lvl	3	i i	1 🔰
SS-05 31 60	Stair Erection Lvl1-Lvl2	25-Jun-14	04-Jul-14	0%	7						:	-	Stair Er	ection LvI1	Lv12	;	1
SS-05 31 10	Decking - Lvl 3	27-Jun-14	02-Jul-14	0%	3								Decking	- Lvl 3			1 🔰
SS-05 12 40	Steel Erection - Lvl 4	02-Jul-14	09-Jul-14	0%	5					 	 	 	🗖 Steel	Erection - L	vl 4		1
SS-05 31 20	Decking - Lvl 4	04-Jul-14	09-Jul-14	0%	3					1			🗖 Decki	ng - Lvl 4		1	
SS-05 31 70	Stair Erection Lvl2-Lvl3	04-Jul-14	15-Jul-14	0%	1					 		 	💻 Sta	r Erection	vi2-Lvi3	1	1
SS-05 12 50	Steel Erection Lvl 5	09-Jul-14	16-Jul-14	0%	5					1	1 1 1		🗖 Ste	el Erection	Lvl 5	;	1
SS-05 31 30	Decking - Lvl 5	11-Jul-14	16-Jul-14	0%	3								🗖 De	cking - Lvl	5		1
SS-05 31 80	Stair Erection Lvl3-Lvl4	15-Jul-14	22-Jul-14	0%	5					 	 	 	– 9	tair Erectio	n Lv13-Lv14		1
SS-05 12 60	Steel Erection - Lvl 6	16-Jul-14	23-Jul-14	0%	5								- (Steel Erecti	on - Lvl 6	1	
SS-05 31 40	Decking - Lvl 6	18-Jul-14	23-Jul-14	0%	3					 			- (Decking - L	vl 6		
SS-05 31 90	Stair Erection LvI4-LvI5	22-Jul-14	01-Aug-14	0%	8								-	Stair Ere	ction Lvl4-	Lvl5	
SS-05 1270	Steel Erection - Lvl 7	23-Jul-14	30-Jul-14	0%	5			ĺ						Steel Ere	ction - Lvl	1 1	
00 05 04 50	N I I I I I I I I I I I I I I I I I I I	25 1 1 4 4	201144		-	I :		1		1	1	1	. –	Dooking	1.17	1 I	1 I I

Steel System Schedule

Image Courtesy of Cannon Design

• Construction length: 119 days

• March 3rd, 2014 – August 15th, 2014

Concrete System Schedule

9, '14 12	Ľ						
Duration 111.5 days 2 days	14.5 days 2 days	3.5 days 19.25 days	2 days 4 days	19.25 days 2 days	15 days 2 days	3.8 days 15 days	2 days 4 days
k Name - Schedule FRP Columns - Lvl 1	FRP Slab & Beams - Lvl 2 Cure Slab - Lvl 2	FRP Columns - Lvl 2 FRP Slab & Beams - Lvl 3	Cure Slab - Lvl 3 FRP Columns - Lvl 3	FRP Slab & Beams - Lvl 4 Cure Slabs - Lvl 4	FRP Slab & Beams - Lvl 5 Cure Slab - Lvl 5	FRP Columns - Lvl 5 FRP Slab & Beams - Lvl 6	Cure Slab - Lvl 6 FRP Columns - Lvl 6

• Construction length: 112 days

• March 3rd, 2014 – April 5th, 2014

- Building Introduction
- Problem Statement & Solution
- Two-way System
- PT System
- Lateral System
- Cost and Schedule Analysis
 - Cost Analysis
 - Schedule Analysis
- System Comparison
- Conclusion

Schedule Comparison

7 Day Project Duration Decrease

Total Syste	em D
Steel	
119 Days	

Duration

Concrete

112 Days

- Building Introduction
- Problem Statement & Solution
- Two-way System
- PT System
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

- Construction Type
 - Steel: 1B
 - Concrete: 1B
- Floor Depth

Member	Steel	Concrete	
Slab/Floor (in)	6.5	10	
Interior Beam (in)	16	-	
Interior Girder (in)	24	24	
Maximum Edge Beam (in)	30	30	
Total Decrease	6.5 in – 12.5 in		

System Comparison

- Cost
 - Steel: \$1.5 Million
 - Concrete: \$1.2 Million
- Construction Time • Steel: 119 Days • Concrete: 112 Days
- Special Consideration:
 - Concrete Construction Crew

\rightarrow 15% Savings

\rightarrow 7 Day Decrease

- Building Introduction
- Problem Statement & Solution
- Two-way System
- PT System
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

Proposed Goals

- system

Conclusions

• Redesign structural systems as a two-way concrete slab system

• Address deflections in longer span bays

• Investigate the feasibility of a post-tensioned

• Determine feasibility of a concrete system -• Consider cost and schedule impact

→ 27% Cost Savings + 7 Day Schedule Decrease

- Building Introduction
- Problem Statement & Solution
- Two-way System
- PT System
- Lateral System
- Cost and Schedule Analysis
- System Comparison
- Conclusion

- AE Faculty | Professor Heather Sustersic
- My Family, Fiancé, and Friends
- Jesus Christ

Acknowledgements

- A Special Thanks to:
 - Cannon Design | Rachel Chicchi
 - SK&A Engineers | Walid Choueiri & Hakan Onel

Image Courtesy of Cannon Design

Image Courtesy of Cannon Design

Questions and Comments?

Image Courtesy of Cannon Design

Balan Tend

Two-v Deflect

Appendix Slides

tion of put	PT Deflections	Waterproof Membranes
cing lons	Edge Deflections	Drainage Calculations
way tions	Water Path	

Joint C

Verification of Output

	Joint	EA		Joint B		1 Jo	DIALC	
		COF=	0.514		COF	= 0,514		
	0.553	0,447	0.376	0.248	0.376	0,440	0.560	
	COI	SIab	Slab	001	SIDS	SIAS	COI	
M	0	259	- 259	0	344	-3447	0	
31	-143.9	-115.8	-39.0-	- 21.1	-39.0	151.4	192.6	
-1		-16.4	- 59.5		ארד 🖌	-16.4		
59	9,1	7.3	-6.9	- 4.5	- 6.9	7.2	9.2	
12		- 3.5	3.8		3.7	-3.5		
33	-1.9	-1.6	- 2.8	- 1.9	- 2.8	- 1.5	2.0	
c3_		-1.4	0.8		-0.8 2	-1.4		
BH	0.8	0.6	- 0.6	0.4	-0.6	-0.6	- 0.8	
m	-131,4	131.4	-356.	- 27	384	- 203	203	

 Comparison of Momen	ts
RAM Concept: C	5 · Column
M5 = 48,41 C5 = 223,7	Ms = C6 =
A 6	
CS = -40.7 CS = -3 M5 = - 32.97 M5z = M51 =	48 - 12.91 16.41
Adding CS + MS Moments	
272.11	312.
 A & 6 -79,67 -360,91	- 364.41
Addition of total Mom	ents alo
M(11-2) = 712.75 M(11-1) = 777.11	
M Total = 1489.9	

Percent Different in Total Design Moments

	Hand Calculations/SP Slab	RAM Concept	% Difference	
Total Moment in Span A-B	650.13	712.75	9%	
Total Moment in Span B-C	806.82	777.11	4%	
Total Moment in Both Spans	1456.95	1489.86	2%	

Max Capacity

Verification of Output

One-Way Shear								
RAM Concept	Hand Calculations	% Difference						
143.1 K	143.1 K	0%						
302.6K	278.4 K	8%						

Shear Stud Rail Design						
	RAM Concept	Decon STDesign				
Stud Rails per Column	12	12				
Studs per Stud Rail	12	13				
Stud Spacing	3.75 in	3.75				

Two-Way Shear							
RAM Concept	Hand Calculations	% Difference					
284.6 K	280 K	1.6%					
189.7 K	189.9 K	0.1%					

- Balancing Load = weight of design strip
- Lower Limit = 50% of design strip weight
- Upper Limit = 125% of design strip weight

Return to Appendix Index

Balancing the Tendons

Two-way System Deflections

- ECR in RAM Concept:
 - Default ECR = 3.35 (ACI209)
 - To account for cracking RAM Concept uses a conservative approach:

$$PNew ECR = ECR * (M_{service}/M_{crack})$$

- Initial ECR Adjustment:
 - ACI318-11
 - Initial factor = 1
 - Long term factor = 2 (5 + Years w)no compression reinforcement)
 - Adjusted ECR = 3

80+141.5

Span 5D - 6D

Return to Appendix Index

Two-way System Deflections

• Trial 1: Weighted Average

 $\frac{\text{Live Load}}{\text{Live Load+Dead Load}} (1.6) + \frac{\text{Dead Load}}{\text{Live Load+Dead Load}} (\text{ECR})$

$$(1.6) + \frac{141.5}{80+141.5} (3) = 2.5$$

Length (FT)	_ength (FT) Deflection		Pass/Fail	
31	1.27	0.775	Fail	

- Trial 2: Compression Reinforcement
 - •Compression reinforcement changes the long term deflection factor
 - •Based on trial runs in RAM Concept an ECR < 1 from compression reinforcement would be required \rightarrow Unrealistic!

Return to Appendix Index

Span	Length (FT)	Deflection	L/480	Pass/Fail	Span	Length (FT)	Deflection	L/480	Pass/Fail
5D - 6D	31	1.0	0.775	Fail	5D - 6D	31	0.955	0.775	Fail
6D - 7D	27.33	0.669	0.683	Pass	6D - 7D	27.33	0.592	0.683	Pass
5E - 6D	40	1.07	1.0	Fail	5E - 6D	40	1.03	1.0	Fail
6E - 7D	37.33	0.971	0.933	Fail	6E - 7D	37.33	0.92	0.933	Pass
5C - 6D	40	1.04	1.0	Fail	5C - 6D	40	0.986	1.0	Pass

Two-way System Deflections

• Trial 3: Drop Panel • First size: 6' x 6' x 6''

• Second size: 7' x 7' x 6"

• Trial 4: Larger Drop Panel or Shallow Beam • Drop Panel: 8' x 8' x 6''

Span					
5D - 6D					
6D - 7D					
5E - 6D					
6E - 7D					
5C - 6D					

Return to Appendix Index

Two-way System Deflections

• Shallow Beam: 7' x 7' x 4"

Length (FT)	Deflection	L/480	Pass/Fail	Span	Length (FT)	Deflection	L/480	Pass/Fail
31	0.943	0.775	Fail	5D - 6D	31	0.709	0.775	Pass
27.33	0.614	0.683	Pass	6D - 7D	27.33	0.511	0.683	Pass
40	1.02	1.0	Fail	5E - 6D	40	0.875	1.0	Pass
37.33	0.943	0.933	Fail	6E - 7D	37.33	0.817	0.933	Pass
40	0.974	1.0	Pass	5C - 6D	40	0.827	1.0	Pass

?)	

Return to Appendix Index

PT System Deflections

• ACI318-11 Section 9.5.2.5: • Long term deflection factor of 5 or more years= 2

• Sustained loads = DL + SW + portion of LL

• 30% sustained LL for commercial building occupancies of office and residential

• SW DL not counted in instantaneous deflections due to these deflections happening prior to the attachment of non-structural elements

• Total Deflection

=Service instantaneous + Long term

=(SID + LL) + 2(SW DL + SID + 0.3LL)

=2(SW DL) + 3(SID) + 1.6(LL)

Return to Appendix Index

Span	Span Length (FT)	Initial Deflections (in)	Final Deflections (in)	Sustained Deflections (in)	L/600 (in)	Pass/Fail
3C-D3	25.33	0.018	0.19	0.17	0.51	Pass
D3-E3	25.33	0.016	0.18	0.16	0.51	Pass
3E-4E	25.33	0.037	0.31	0.27	0.51	Pass
4E-5E	25.33	0.059	0.55	0.49	0.51	Pass
5E-6E	31	0.044	0.52	0.48	0.62	Pass
6E-7E	27.33	0.020	0.35	0.33	0.55	Pass
7E-8E	25.33	0.007	0.18	0.17	0.51	Pass
9D-9C	23.33	0.000	0.03	0.03	0.47	Pass
9C-8C	12.67	0.000	0.10	0.10	0.25	Pass
8B-7B	25.33	0.060	0.50	0.44	0.51	Pass
6C-5C	31	0.045	0.53	0.49	0.62	Pass
5C-4C	25.33	0.059	0.56	0.50	0.51	Pass
4C-3C	25.33	0.029	0.23	0.20	0.51	Pass

Edge Deflections: Two-way

Edge Deflections: PT

Span	Span Length (FT)	Deflections (in)	L/600 (in)	Pass/Fail
3C-D3	25.33	0.14	0.51	Pass
D3-E3	25.33	0.13	0.51	Pass
3E-4E	25.33	0.21	0.51	Pass
4E-5E	25.33	0.47	0.51	Pass
5E-6E	31	0.32	0.62	Pass
6E-7E	27.33	0.21	0.55	Pass
7E-8E	25.33	0.21	0.51	Pass
9D-9C	23.33	0.03	0.47	Pass
9C-8C	12.67	0.03	0.25	Pass
8B-7B	25.33	0.23	0.51	Pass
6C-5C	31	0.37	0.62	Pass
5C-4C	25.33	0.50	0.51	Pass
4C-3C	25.33	0.25	0.51	Pass

Return to Appendix Index

Water Path

1. Top Soil

2. Compacting Clay

3. Backfill

4. Protection Board

5. Waterproofing Membrane

6. VADOT 57 Stone

Compacting Clay - 10" – 12" Thick

Backfill

-full gradation soil with minimal fines

Protection Board -1/2" thick -plastic & geotextile material

- Thins out to top soil 12'-20' from building

-recommended by geotechnical engineer

- Thickness: 1/16th
- Excellent adhesion to the wall through the use of the
- System 4000 Surface Conditioner
 - Water based, latex surface treatment
 - High tack finish to the treated subtract
 - Formulated to bind site dust and concrete efflorescence
- Reduces inventory and handling costs by packaging the conditioner and membrane together

Return to Appendix Index

Waterproofing Membranes

• Foundation Wall: Bituthane System 4000

- Basement Slab: Bituthane System 4000
 - Thickness: ¹/₂"
 - Installed between the mud slab and floor slab

 - High tensile strength to provide resistance against the stress of ground settlement

• Forms a permanent seal against ground water

• At the time of boring all holes were dry

• 48-72 hours later all holes showed water levels

•All holes were 3 ¹/₄" in diameter

Return to Appendix Index

Drainage Calculations

Compare Depth of Footing to Water Level Measurements								
Boring Number	Location	Top of Footing	Bottom of Footing	Elevation of Water Level				
B-1	Outside of building footprint - West side	-	-	2484.0				
B-2	Outside of building footprint - West side	-	-	2463.5				
B-3	B-3 Outside of building footprint - North-west side		2474.83	2471.6				
B-4	Inside of building footprint	2476.5	2474.83	2474.4				
B-5	Inside of building footprint	2476.5	2474.83	-				
B-6	Inside of building footprint	2474	2472.33	2494.3				
B-7	Outside of building footprint - East side	2476.5	2474.25	2503.0				
B-8	Outside of building footprint - East side	2476.5	2474.25	2511.0				

Return to Appendix Index

Drainage Calculations

Flow Rate of Ground Water									
Boring Number	Depth (FT)	Area of Bore Hole (FT²)	Depth * Area (FT³)	Number of Hours	Flow Rate (FT ³ /HR)	Flow Rate (gpm)			
B-6	22	8.29	182.4	48	4	0.4738			
B-7	46	8.29	381.4	72	5	0.6604			
B-8	59	8.29	489.2	72	7	0.8470			

•Tributary Area:

• 2870 SF

Return to **Appendix Index**

Drainage Calculations

- Average rainfall rates Bristol, VA = 0.028 gpm/SF

 - 10' away from structure (half the distance to the surrounding storm drain)

• Total rainfall per pipe = 40.2 gpm

• Using Perforated PVC Drainage Pipe:

Return to Appendix Index

Drainage Pipe Design

• 4" pipe at the base of the foundation walls

• (2) 4" pipe beneath the slab-on-grade

